Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation.

نویسندگان

  • V Coustou
  • C Deleu
  • S J Saupe
  • J Bégueret
چکیده

The het-s locus is one of nine known het (heterokaryon incompatibility) loci of the fungus Podospora anserina. This locus exists as two wild-type alleles, het-s and het-S, which encode 289 amino acid proteins differing at 13 amino acid positions. The het-s and het-S alleles are incompatible as their coexpression in the same cytoplasm causes a characteristic cell death reaction. We have proposed that the HET-s protein is a prion analog. Strains of the het-s genotype exist in two phenotypic states, the neutral [Het-s*] and the active [Het-s] phenotype. The [Het-s] phenotype is infectious and is transmitted to [Het-s*] strains through cytoplasmic contact. het-s and het-S were associated in a single haploid nucleus to generate a self-incompatible strain that displays a restricted and abnormal growth. In the present article we report the molecular characterization of a collection of mutants that restore the ability of this self-incompatible strain to grow. We also describe the functional analysis of a series of deletion constructs and site-directed mutants. Together, these analyses define positions critical for reactivity and allele specificity. We show that a 112-amino-acid-long N-terminal peptide of HET-s retains [Het-s] activity. Moreover, expression of a mutant het-s allele truncated at position 26 is sufficient to allow propagation of the [Het-s] prion analog.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the structure of the infectious amyloid form of the prion-forming domain of HET-s using high resolution hydrogen/deuterium exchange monitored by mass spectrometry.

The HET-s prion protein of Podospora anserina represents a valuable model system to study the structural basis of prion propagation. In this system, prion infectivity can be generated in vitro from a recombinant protein. We have previously identified the region of the HET-s protein involved in amyloid formation and prion propagation. Herein, we show that a recombinant peptide corresponding to t...

متن کامل

Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with...

متن کامل

Genomic Clustering and Homology between HET-S and the NWD2 STAND Protein in Various Fungal Genomes

BACKGROUND Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when inte...

متن کامل

A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast.

Prions are self-propagating, infectious aggregates of misfolded proteins. The mammalian prion, PrP(Sc), causes fatal neurodegenerative disorders. Fungi also have prions. While yeast prions depend upon glutamine/asparagine (Q/N)-rich regions, the Podospora anserina HET-s and PrP prion proteins lack such sequences. Nonetheless, we show that the HET-s prion domain fused to GFP propagates as a prio...

متن کامل

Sexual transmission of the [Het-S] prion leads to meiotic drive in Podospora anserina.

In the filamentous fungus Podospora anserina, two phenomena are associated with polymorphism at the het-s locus, vegetative incompatibility and ascospore abortion. Two het-s alleles occur naturally, het-s and het-S. The het-s encoded protein is a prion propagating as a self-perpetuating amyloid aggregate. When prion-infected [Het-s] hyphae fuse with [Het-S] hyphae, the resulting heterokaryotic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 153 4  شماره 

صفحات  -

تاریخ انتشار 1999